
www.manaraa.com

HAL Id: hal-02271044
https://hal.archives-ouvertes.fr/hal-02271044

Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Model-based Development for automotive
Florent Fève, Gérard Foin, Gilles Le Calvez

To cite this version:
Florent Fève, Gérard Foin, Gilles Le Calvez. Software Model-based Development for automotive. 2nd
Embedded Real Time Software Congress (ERTS’04), 2004, Toulouse, France. �hal-02271044�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227320190?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02271044
https://hal.archives-ouvertes.fr

www.manaraa.com

2nd European Congress ERTS - 1 - 21 – 22 – 23 January 2004

Session 4B: Model Driven Approaches

Software Model-based Development for automotive

Authors :Florent Feve, Gérard Foin, Gilles Le Calvez

Valeo Electronics and Connective Systems, Center of Electronics Expertise

1. ABSTRACT

Using modeling tools to simulate the behavior of a system before developing the corresponding product(s), is now
becoming a common approach for the automotive industry, but many challenges remain. In order to obtain a
seamless and efficient process for a whole software development we must pay attention to the choice of the
modeling tool(s). Modeling tool(s) must be easily connected with other commercial and in-house tools used for the
development. The usual software development methodology must be adapted to fully take advantage of those
tools. Automatic code generation as well as modeling tools database access capability gives the opportunity to
improve the global code test strategy. Whatever the performances of the tools are, the process applied remains a
key point for the development.

This paper explains the innovative approach that has been developed to meet the challenges described above.
The corresponding VALEO model-based development process is based on Statemate, Rhapsody in Micro C, static
and dynamic test tools and in-house tools.

2. INTRODUCTION

It has long been recognized that ambiguous and inconsistent requirements are the primary cause of system design
errors.

The global process of VALEO model-based development provides solutions to this critical issue. It involves the
initial functional model, followed by the software design model, automatic code generation and the automatic
software and product validation bench. In addition, the global process offers, as a spin-off, traceability between all
the different development steps. The automatic link will be detailed between requirements specification and
validation, as well as the automatic link between requirements specification and the code implemented in the
product. Finally a general description of the current code test strategy will be given and the planned improvements
will be presented.

3. MODEL- BASED SOFWARE DEVELOPMENT PROCESS

In recent years several modeling tools have come out. The use of these tools produces a real improvement in
software development. It ensures that the product being developed relates to the goal and purpose of the system.
Nevertheless, most of these tools are time-consuming, and they do not yet bring about seamless software
development. Due to this lack of overall efficiency, the user cannot take full advantage of the initial time investment
they require. Indeed, in many cases there is a gap between the generated model and the implementation on the
one hand, and, on the other hand, between the model and the validation test of the product. After explaining these
two gaps, this paper presents the solutions developed.

www.manaraa.com

2nd European Congress ERTS - 2 - 21 – 22 – 23 January 2004

3.1 BRIDGING THE GAP IN THE IMPLEMENTATION PROCESS

The first potential gap lies between the functional reference model and further application code implementation.
Using a tool to only model the functional requirements in order to have a functional reference is interesting, but one
still needs to make a manual design of software and to develop the code. To avoid having a gap between the
model and the implementation, automatic code generation capability is now used.

There are a lot of modeling and code generation tools on the market. Although code generation technology has
significantly matured during recent years, the results are often inappropriate for embedded software. The reason is
that several attempts have been made to generate embedded code from a system or functional model without
making any software design. The result is that the implementation isn’t suited for Design constraints such as timing
constraint, tasks synchronization, timing bottlenecks, RAM and ROM constraints etc.

On the other hand, if one uses an implementation- or design-oriented modeling tool, the generated code may meet
embedded software constraints (if the code generator is efficient enough), but the model will take much longer to
develop and be much harder to maintain. Taking into account and evaluating the impact of change requests will be
long and tedious; the risks are then similar to those taken when one goes directly from the customer requirements
to the software implementation using a manual process without writing a software requirement document.

3.2 BRIDGING THE GAP WITH VALIDATION TESTS

The validation step of a product is a very important phase of development as to duration for two reasons. The first
reason is that a great attention is required to elaborate the right tests. Indeed, due to time to market constraints, the
number of tests that can possibly be executed on the product is limited. Therefore only relevant ones should
appear in the Validation Plan and, as far as possible, every relevant scenario should be thought of and
considered. The second reason is that tests on the product will be applied many times, from the first mock-up to
the final product. Each time a new version is generated in order to take into account customer change requests,
the entire validation plan will be applied for non-regression testing.

Once the model is validated it becomes the functional reference. This validation is done through simulation and
record capability of the tool. When the product is to be developed, equivalent tests will be made to validate the
final product. One challenge here is to compare the results of the functional simulation model with the results of the
corresponding validation test on the product, since the physical characteristics of the inputs and outputs are not
taken into account in the functional model. The second challenge is to reduce the duration of this validation phase
by re-using the model test.

3.3 MODEL-BASED PROCESS

The VALEO model-based software development process has been established in order to bridge these two gaps.
Figure 1 shows that, on the classical V curve, modeling and simulation tools have been added as well as an
automatic code generation tool. To take full advantage of the use of these tools, internal modeling rules as well as
in-house tools have been developed in order to make the process seamless and increase the efficiency of the
different test steps.

www.manaraa.com

2nd European Congress ERTS - 3 - 21 – 22 – 23 January 2004

Figure 1. Model-Based Software Development Process

The Statemate tool is used for functional system and software modeling, and Rhapsody in Micro C tool for global
software design and automatic code generation. The databases of these two tools are compatible. We clearly
begin with a functional model, without taking into account the implementation constraints, to obtain a functional
reference that can be validated by the customer through a PC platform executable. The model is then transformed
into a global design making a new functional breakdown if necessary and adding design attributes.

The tool database access capability is used to optimize the test steps by formatting files for direct input of the code
test tools.

The link between the functional model and validation is provided by an in-house executable that has been added
as a plug-in in the Statemate environment. It enables the test scenarios to be captured via graphic panels and
automatically generates the corresponding graphic test in a statechart format out of which test script for automatic
validation bench is extracted as well as the validation plan documentation.

www.manaraa.com

2nd European Congress ERTS - 4 - 21 – 22 – 23 January 2004

3.4 PROCEDURES

3.4.1 Formalization of Requirements

Figure 2. Formalization of Requirements (shaded area)

At the very beginning of the modeling phase ”the functional context diagram from which the tool automatically
generates a graphic panel linked to the inputs and outputs of the model“ is defined. From the customer
requirements the validation scenarios are very easily established through the graphical panel by clicking to enter
the inputs and expected results with the exact timing.

In this very innovative part of the VALEO Model- Based Software Development Process, three elements are
automatically generated (Figure 3) :

Figure 3. Validation scenarios formalization

www.manaraa.com

2nd European Congress ERTS - 5 - 21 – 22 – 23 January 2004

Graphic Tests

Each captured test is generated in a state chart format, therefore each test is part of the Statemate environment
and available for both model validation when developed and a non regression test when change requests occur.
The state chart contains the functional sequence as well as all the necessary information for the validation sheet
including the requirement being validated.

Validation Scripts

The Validation scripts used as direct input for automatic validation bench are the exact translation of the tests
scenarios applied on the model.

Validation Plan Documentation

A Validation Plan Document is automatically generated including textual and/or graphical representation of each
test. This validation plan is ready to deliver to the customer.

3.4.2 Requirement validation with the customer

Communication with the customer concerning the validation of the requirements understanding will be done by
using :

A. Before developing the functional model

• Graphical tests (state chart format and Sequence diagram format)
• Validation Plan

B. After developing the functional model

• Sequence Diagram
• Virtual prototyping (Figure 4)
• Rapid prototyping (Figure 4)

Figure 4. Prototyping
During model development and once finished, graphic
tests through simulation test bench are applied to
check the conformity. Tests can be recorded during
simulation in Sequence Diagram format to be
analyzed easily. In addition, a virtual prototype (PC
platform executable) is delivered. Rapid prototyping on
an oversized target can also be delivered in order to
have a physical ECU representative of the behavior.

www.manaraa.com

2nd European Congress ERTS - 6 - 21 – 22 – 23 January 2004

3.4.3 Mock-up and final product implementation

Figure 5. Implementing the Product (shaded area)
The challenge of the process during the downward side of the V curve is to maintain consistency, from the
requirement to the implementation.

Two models are made: the first one is for the system and software functional requirements specification to validate
the customer requirements, and the second for the software global design to automatically generate the code ;
consequently the consistency between these two models must be checked from a block box point of view. This can
be easily done because Statemate and Rhapsody in Micro C have compatible databases, and their record format
files are identical.

Figure 6. Consistency check between Functional and Design model
As illustrated in Figure 6, a black box test is performed on the functional model using the graphical tests and
recording the inputs and outputs in two different files. These tests are also performed on the functional part of the

www.manaraa.com

2nd European Congress ERTS - 7 - 21 – 22 – 23 January 2004

design model from which the code is generated. A PC platform executable has been generated. Input record files
can be directly re-run on the PC platform executable and the results compared to ensure that the design
constraints meet the requirements.

Once the consistency has been checked from a block box functional point of view, the code should be generated
for a specific micro controller and linked with the low layers. Application Programming Interfaces have been defined
in order to link the application layer generated automatically from the model to the low layers written manually,
including local device Management, Communication management, driver components management and basic
software components (Figure 7).

As to integration with OS, Rhapsody in Micro C enables the user to customize the code generation so that it will fit
the OS characteristics exactly. Therefore it can target a scheduler-based implementation, as well as any OSEK or
in-house OS without having to evolve the model.

Figure 7 describes the global approach for Micro controller target implementation from a model.

To have an efficient process it has been necessary to define strict modeling rules concerning model architecture
and naming rules. These rules have been defined to facilitate the translation of the functional model into a design
model without setting any constraint on the functional model. This one should remain readable and maintainable.

The initial step of design model development is the importation of the functional model. This model is then
transformed into a design one. Task allocating, precise data typing and design attributes are defined. Then a PC
platform executable (of the application part of the model) is generated in order to check the consistency between
the two models.

Once the functionality is ensured, the manual C code (low layers) and any external application C code are
integrated. The target configuration is also defined in a code generation profile to generate an executable for a
specific target.

The design modeling tool is flexible enough to allow external C code to be linked to any part of the model. This is
done either by linking a specific C code function to a specific activity (function) of the model or by linking a full C file
through a code generation menu when generating the final executable.

A first mock-up is then generated including debug communication in order to test the software on the target
connected to the model for graphical debug.

This first debugging and trouble-shooting of the software running on the final target are easily done through the
graphical animation of the model on a PC linked to the target.

Optimization at the model level can then be made to reduce the code size. Each time an evolution is made in the
design model a new PC platform executable is generated to check the consistency between the functional and
design models before generating the target version.

www.manaraa.com

2nd European Congress ERTS - 8 - 21 – 22 – 23 January 2004

Figure 7. Model- Based Process : global approach for implementation

www.manaraa.com

2nd European Congress ERTS - 9 - 21 – 22 – 23 January 2004

3.4.4 Implementation test

Figure 8. Testing the implementation (shaded area)

3.4.4.1 Static code test

Since the automatic code generator used is not certified, the same level of testing as for manual code is required.
To apply the same test tools on both manual and automatic codes, these must respect the internal rules in terms of
structure, presentation and naming rules. This is possible due to the fact that the automatic code generation is fully
customizable.

As illustrated in Figure 9, prior to Unit Test, customized commercial tools are applied on the whole code (manual
and automatic) to make static code analysis. VALEO internal naming rules compliance reports are generated and
therefore, MISRA rules which are included in VALEO rules are checked.

www.manaraa.com

2nd European Congress ERTS - 10 - 21 – 22 – 23 January 2004

Figure 9. Static code analysis

3.4.4.2 Dynamic code test

Once static tests have been performed, a dynamic analysis tool is applied on the code of the complete application
for run time error detection like index and arithmetic overflows.

Using the dynamic code analysis tool in combination with modeling and code generation tools significantly
improves the process. Indeed one characteristic of dynamic code analysis is that the duration of the tool analysis
can be rather long (from few hours to several weeks depending on the project) and that once the tool has finished
the analysis, a big amount of work remains for the developers to analyze the report generated by the tool. This
duration can be reduced by limiting the number of combinations. Defining a range for each input and output data
will limit the overall calculation and the number of warnings, thus limiting the duration of the tool results analysis.

This range information is included, during specification and design steps, in the model data dictionary using
specific customized attributes. As shown in Figure 10 the code generator is customized so that, in the generated C
files, the data range appears as a comment which is identified with a specific token. An in-house tool automatically
extracts the range information and configures the C files so that the dynamic code test tool optimizes the analysis.

www.manaraa.com

2nd European Congress ERTS - 11 - 21 – 22 – 23 January 2004

Figure 10. Run time error check

3.4.5 Product validation

Figure 11. Product Validation (shaded area)
As mentioned above, Validation scripts are used as a direct input for automatic validation bench. They are the
exact transcription of the test scenario applied on the model. This is a great improvement compared with the
process in which model testing is first recorded and then equivalent scenarios are handwritten in a specific script
format to rerun the same test on the final product to compare the results.

Extracted from the test state charts, the test scripts contain the functional sequence as well as all necessary
information for the validation sheet, including the test number, the description of the test, requirement(s) under
validation and validation bench configuration information if necessary. The scripts are generated in RTF format with
a generic format for stimulating inputs and verifying outputs.

www.manaraa.com

2nd European Congress ERTS - 12 - 21 – 22 – 23 January 2004

Macros are used to translate the functional inputs and outputs into physical ones, taking into account the physical
characteristics of each ECU and allowing very easy adaptation in case of hardware changes. Whatever the
physical support of the inputs/outputs may be (logical, analogical, PWM, network), the validation plan and
validation script will be up-to-date with this methodology. Only macro implementation takes into account the
physical support.

Once the scripts have been executed on the automatic Validation Bench, the results are compared with the
simulation results which are the reference for the validation tests (Figure 12).

Figure 12 Validation Process
The global approach for model and product validation is described in Figure 13.

Figure 13. Model-Based Process : global approach to validation

www.manaraa.com

2nd European Congress ERTS - 13 - 21 – 22 – 23 January 2004

Another great item of interest of this process, is the traceability capability.

An Attributes-specific field of the modeling tool allows the user to enter pre-formatted information linked to any
element of the model. This Attributes field is used to establish the traceability.

At the beginning of the development, textual requirements are analyzed and each requirement is identified. A label
is assigned to each requirement.

• The reference to the requirement(s) is established during the definition of test scenarios via graphic panels.
Automatic generation of the graphical test fills the Attributes traceability field with the requirement(s) label(s).

• When developing the functional model each element implements one or several requirement(s) . Again
traceability is ensured by filling the Attributes traceability field with the corresponding label(s).

• The design inherits this traceability automatically since the functional model is the starting point for the design
model . The Attributes traceability field is filled for each added design element.

• Finally the code generation profile has been customized so that traceability information (label(s) of the
Attributes traceability field) appears as comments for every C code function.

An in-house development enables users to extract the total traceability matrix in an Excel format through a fully
integrated tool suite (Figure 14).

Figure 14. Traceability Matrix
When a change request is made, the impact on the functional model, software design, C code functions, and
validation test is immediately identified.

CONCLUSION

A seamless model based development process has been demonstrated and its efficiency validated. It has actually
been shown to improve communication between different members of the development team and customers, and
to reduce time to market. This has been achieved while increasing the overall development quality.

Obviously, the availability of functional system models provides a safe ground for all the following software
development and validation. The entire Valeo process takes full advantage of this ground in a seamless
development, with tools which are all connected to this initial step. The gaps often observed in validated
development methods, as mentioned above, have been bridged.

3.4.6 Traceability management

www.manaraa.com

2nd European Congress ERTS - 14 - 21 – 22 – 23 January 2004

This work has been made possible, because the tools used are open tools. The accessibility of the modeling tools
database allows efficient process customization to our goals.

This innovative process has been applied partly to the development of an industrial project currently under
production. It has already brought great quality improvement and significantly reduced development time.
Nevertheless the process can be improved in particular for C code testing. Work is already planned to take
advantage of the code generation combined with data range information to optimize the code Unit tests. The aim is
to automate the unit tests to have a coverage analysis as well as functional, structural and robustness run time
error detection.

The automatic link between specification and validation is a key in the process ; it dramatically reduces the
validation phase, ensures the consistency of the process and is very flexible. It can be very easily adapted to any
specific automatic test bench modifying a small and well-identified part of the in-house tool.

Regarding validation, new tools based on mathematical analysis of models such as BDD or Symbolic
representation, where the goal is to generate automatically relevant tests from a model, are also being evaluated.
The current process is ready to integrate these tools as soon as they have been fully developed.

ACKNOWLEDGMENTS

The authors thank P. Germanicus, G.M. Martin and S. Zamia for advice and support.

CONTACT

Florent Feve, CEE Software Expertise Engineer.
11 years of experience in Automotive Software Development, joined VALEO Center of Electronics Expertise in
2000 as modeling and code generation tools specialist.

Gérard Foin, CEE System dependability department manager.
33 years of experience in Aeronautics and Automotive Electronics Development, joined VALEO as Manager of
Software Department of the CEE in 2001 and System dependability department manager since 2003.

Gilles Le Calvez, Director of VALEO Center of Electronics Expertise.
14 years of experience in Aeronautics and Automotive Software Development, joined VALEO as Manager of
Software Department of the CEE in 1997 and Director since 2001.

Valeo Electronics and Connective System
2, avenue Fernand Pouillon
Europarc
94042 Creteil Cedex – France
Tel. : 33 1 45 13 78 12
FAX : 33 1 45 13 78 68
florent.feve@valeo.com

DEFINITIONS, ACRONYMS, ABBREVIATIONS

BDD: Boolean Diagram Decision

ECU: Electronic Control Unit

RP: Rapid Prototyping

VP: Virtual Prototyping

mailto:florent.feve@valeo.com

